An Introduction to Social Network Analysis

Gregory D. Webster Dept. of Psychology University of Florida

SPSP 2017 San Antonio, Texas January 20, 2017

Slides: <u>http://tinyurl.com/spsp-sna</u> Paper: <u>http://tinyurl.com/sna-paper</u>

Workshop Overview

Three Parts

I. What is a social network?

II. How do we find and collect data on social networks?

III.How do we analyze social network data?

Part I: What Is a Social Network?

<u>Kevin Bacon</u> <u>6 Degrees of Kevin Bacon</u>

Small-World Experiment

dw 2010

Small-World Experiment

- What is the average path length from one person to another in the U.S.?
- For example, how many steps exist between you and Barak Obama (or a randomly chosen person somewhere)?
- Average length is about 5.5 to 6 links.
- "Six Degrees of Separation"
- Is changing with online social networks

Small-World Experiment

 But it's no longer just six degrees; it's changing with online social networks.

Year	Distance		
2008	5.28		
2011	4.74		
2016	3.57		
Distanc	Distances as reported in Feb 2016 [38]		

laminin beta 3 5.66 2.92 1.15 2.54 0.27	lieiwu	rks are everywhe	
sialythransferase 0.71 3.02 0.76 0.88 0.95 mdsv-2 0.71 3.02 0.76 0.88 0.95 mdsv-2 0.77 1.17 1.39 4.23 syocia light chain 2 Nras nestia 0.50 Friendster 0.50 Friendster	14.25 5.79 0.84 0.28 7.12 2.42 8.82 1.37 0.84 0.05 0.61 0.05 4.71 2.62 4.62 6.36 facebook	1.70 1.44 0.94 3.22 2.69 3.19 2.25 2.00 1.82 0.83 0.05 0.05 1.36 1.01 0.53 0.87 1.03 0.47 0.28 0.14 0.70 0.03 1.50 0.26 0.35 1.43 5.75 1.46 1.72 0.05 1.09 3.81 2.18 2.10 1.43 5.75	1.45 0.59 2.81 0.87 2.5 11.45 6.87 1.42 12.04 0.0 1.36 0.65 1.93 0.91 4.22 7.28 5.76 0.48 1.39 0.34 7.14 4.90 0.05 1.86 0.05 2.85 5.09 0.91 4.22
unknown 29d 1.25 0.67 0.64 0.00 1.90 unknown 31g 0.66 0.55 0.61 0.39 1.30 unknown 33 2.79 0.12 0.12 2.05 1.36 unknown 40(1) 2.90 1.90		Mark Zuckerberg Has worked at Facebook Studied Computer Science at Harvard University # Lives in Pala Alte, California: # From Dobte Famy, New York: # Bott on May 14, 1984	tt Sent Hessage # Peke
 MySpace 		123 h the second second	You and Mark
keratin 19 0.46 0.33 0.36 0.22 new, 92(1) 4.74 6.55 3.93 5.56 7.04 uknown 94 0.21 0.21 0.21 0.21 0.21 0.21		Education and Work	AL 3 Mutual Frances
 Facebook 	0.6 0.3 0.7 0.7 2.64 2.64 2.64	Tenglineers Facebook Feb 2004 to present - Palo Atro, California	Spannesred Create an Au Police Auctions H Deaulichers Dr
Ninovn 1096 0.90 0.19 0.38 0.29 0.13 0 Ninovn 119 0.80 0.19 0.43 0.34 0.07 0 Ninovn 111 0.83 0.16 0.41 0.31 0.06 0 DEF-2 1.71 0.90 1.31 1.95 0.75 1 swin collagen 39.91 9.90 1.31 1.95 0.75 1	22 Tella 44 42 44 45 46 46 46 46 46 46 46 46 46 46	College Revised University Compute Scatce - Psychology • CLLEZ, Intelligent Machines with Andrew Boowerth.	Like a slick deal? Now you can get up to 90% retail with police scied auctions. Get in on the action.
Google+	Ramily Family Faren Zuckerberg Regime	 Ch121. Introduction in Computational Theory with Jaron Warp and Karp-King Jin 	SF Bucket Line A
ta A Inhibin 2.58 0.52 0.42 0.29 0.12 0.5 p53 0.31 0.20 0.25 0.08 0.06 0.5 PThrr-P 0.96 3.23 7.65 5.64 0.52 0.4	5 Dilward 2 Zackerberg 1 litter	High School Ardstey High School	Things to de in San Francisco before you alle. One huge cospon emailed daily.
 LinkedIn 	Randi Zuckerberg	Class of 2002	Stay close to your team It Check the score and see highlights from the
c-fos 1.81 0.26 0.25 0.34 1.67 3.21 un B 3.96 1.81 0.36 0.34 0.33 0.81 0.64 Jun B 3.96 1.88 1.17 3.77 2.18 1.66 defsi 0.64 2.66 0.07 0.07 2.78 1.66	Sate	Philosophy	big game with AT&T trigh Speed Internet for only \$14.95/ma
Twitter	Arisite	*All children are artists. The problem is how to remain an artist once he	Craft Seer Attorney

What Is a Social Network?

- A social network is a representation of nodes and the relationships between individual nodes (i.e., ties, links, paths).
- Nodes can be people, schools, corporations, states, countries, events, places, films, bands, groups, etc.
- Ties can be (dis)liking, friendship, acquaintance, co-authorship, citation, debt/credit, spatial relationships, common attendance, agreement, etc.

What Is a Social Network?

- Nodes: Individual universities
- Ties: Hiring relations; who hires whom

Types of Social Networks

- Egocentric vs. Sociocentric
- One-Mode vs. Two-Mode Networks
- Directed vs. Bidirectional (Non-Directed) Ties
- Valued vs. Binary (Non-Valued) Ties

Ego- vs. Sociocentric

- Egocentric or "Personal" Networks
 - Who do you know?
 - How well do you know them?
 - Do those people know each other?
 - How well do they know each other?
 - Everyone knows you, the ego
 - "Star" network, with ego at center

An Egocentric Network

- Ego knows everyone (by definition).
- Person A knows B and G (and ego).
- Persons D and E know only ego.

An Egocentric Network

- Egocentric networks are ideal for studying people's social support networks.
- Researchers are often interested in how dense people's ego networks are.
- Some programs: <u>EgoNet</u>, <u>E-Net</u>
- New research focusing on overlap among couples' ego networks (duocentric networks), and how that relates to relationship outcomes.

Ego-vs. Sociocentric

- Sociocentric or "Whole" Networks
 - Network bound/defined by something other than you/self/ego. For example:
 - Everyone on Facebook, Twitter, etc.
 - Everyone in your home department
 - Everyone attending SPSP/workshop
 - Do all these people know each other?
 - How well do they know each other?

A Sociocentric Network

Who Hires Whom in AAU Psychology Depts. <u>Association of American Universities</u>

1-vs. 2-Mode Networks

- Most social networks are "one-mode."
- In an association matrix, the row labels are the same as the column labels; the matrix is square.

<u>Liking</u>	Alex	Brandy	Cecilia
Alex		1	0
Brandy	1		0
Cecilia	0	1	

1-vs. 2-Mode Networks

- Some social networks are "two-mode."
- In an association matrix, the row labels are different from the column labels; the matrix is often rectangular.

<u>Present</u>	Jan.	Feb.	March	April
Alex	1	1	0	1
Brandy	1	1	0	1
Cecilia	0	0	1	1

1-vs. 2-Mode Networks

- We can analyze two-mode data as onemode data by collapsing one dimension,
- We can have a social network of either people (how are people linked by events) or events (which events are linked by people).

<u>Present</u>	Jan.	Feb.	March	April
Alex	1	1	0	1
Brandy	1	1	0	1
Cecilia	0	0	1	1

<u>Present</u>	Jan.	Feb.	March	April
Alex	1	1	0	1
Brandy	1	1	0	1
Cecilia	0	0	1	1

Collapsing across events...

<u>Present</u>	Alex	Brandy	Cecilia
Alex		3	1
Brandy	3		1
Cecilia	1	1	

Present	Jan.	Feb.	March	April
Alex	1	1	0	1
Brandy	1	1	0	1
Cecilia	0	0	1	1

Collapsing across people...

Present	Jan.	Feb.	March	April
Jan.		2	0	2
Feb.	2		0	2
March	0	0		1
April	2	2	1	

Some 2-Mode Examples

- People and events (e.g., meetings)
- People and places
- Supreme court justices (people) and their decisions (events)
- People and survey items (clustering)
- People in movies (<u>IMDb</u>, Kevin Bacon)
- People in bands
- Characters appearing in common episodes or chapters (Game of Thrones)

 Note: Collapsing asymmetric two-mode data produce symmetric one-mode data.

<u>Present</u>	Jan.	Feb.	March	April
Alex	1	1	0	1
Brandy	1	1	0	1
Cecilia	0	0	1	1

Collapsing across people...

<u>Present</u>	Jan.	Feb.	March	April
Jan.	_	2	0	2
Feb.	2		0	2
March	0	0	_	1
April	2	2	1	_

Directed/non-directed Ties

- Social networks may be either directed (symmetric about the matrix diagonal) or non-directed (asymmetric...diagonal).
- A liking matrix will often have directed, unreciprocated, asymmetric ties.

<u>Liking</u>	Alex	Brandy	Cecilia
Alex		1	0
Brandy	1		0
Cecilia	0	1	

Directed/non-directed Ties

- An acquaintance matrix will have nondirected, reciprocated, symmetric ties.
- Example: Facebook data produce nondirected, reciprocated, symmetric ties.

<u>Liking</u>	Alex	Brandy	Cecilia
Alex		1	0
Brandy	1		1
Cecilia	0	1	

Valued vs. non-valued Ties

- Most social networks have non-valued or dichotomous ties, using only 1s and 0s.
- Either a person knows, likes, is friends with another person or not.

Liking	Alex	Brandy	Cecilia
Alex		1	0
Brandy	1		0
Cecilia	0	1	

Valued vs. non-valued Ties

- Some social networks have valued ties, using ordinal, ratio, or continuous data.
- We might ask how much a person knows, likes, or is friends with another.

Liking	Alex	Brandy	Cecilia
Alex		3	0
Brandy	2		0
Cecilia	0	1	

0 = don't know, 1 = know, 2 = friends, 3 = BFFs

Valued Ties: Examples

- Survey data of friendship strength
- Some egocentric data
- Networks of debt and credit
- Trade networks using economic data

 Note: Collapsing dichotomous two-mode data can produce valued one-mode data.

<u>Present</u>	Jan.	Feb.	March	April
Alex	1	1	0	1
Brandy	1	1	0	1
Cecilia	0	0	1	1

Collapsing across people...

Present	Jan.	Feb.	March	April
Jan.	_	2	0	2
Feb.	2		0	2
March	0	0	_	1
April	2	2	1	_

• Note: Some social network metrics only work with dichotomous data, so this..

<u>Present</u>	Jan.	Feb.	March	April
Jan.		2	0	2
Feb.	2		0	2
March	0	0	_	1
April	2	2	1	

Becomes this...

Present	Jan.	Feb.	March	April
Jan.	—	1	0	1
Feb.	1		0	1
March	0	0	_	1
April	1	1	1	_

Assumptions of Social Networks

- Defining Network Space or Scope
- Networks as Units of Analysis

Network Space or Scope

- Both ego- and sociocentric researchers should define their network space or scope prior to data collection.
 - Egocentric: How many people? 25?
 - Sociocentric: Network boundary?
 - All Psych. Depts. in the world?
 - U.S. Psych. Depts.?
 - "Research-I" Depts.?
 - AAU Depts.?

Units of Analysis

- Single Ego- or Sociocentric Network
 - Individual nodes are units of analysis
- Multiple Ego- or Sociocentric Networks
 - Either nodes or networks can be units of analysis (similar to persons in groups).
 - Can use a mixed- or multilevel model approach: Nodes nested within networks.
 - Examples: Liking data from 30 classes, Egocentric data from 100 people, etc.

Part II: Finding and Collecting Social Network Data

Finding and Collecting Social Network Data

- Survey Methods
- Behavioral Methods
- Web/Online Methods
- Archival Methods

Survey Methods

- Sociocentric or Whole Networks
 - Simply ask the all group members who knows, likes, is friends with whom.
 - Can be valued or dichotomous ties
 - Roster/checklist method
 - Free recall or memory method
 - Nomination method (name 5 friends)

Roster/Checklist Method

Aleksandra's checklist: Brynna's checklist:

Name	Closeness	Name	Closeness
Aleksandra		Aleksandra	1
Brynna	1	Brynna	
Chelsea	0	Chelsea	0
Dominique	0	Dominique	1
Eunice	3	Eunice	3
Fernando	2	Fernando	0

0 = don't know, 1 = know, 2 = friends, 3 = BFFs

Roster/Checklist Method

Aleksandra's checklist: Multiple measures

Name	Closeness*	Coauthor	Cited
Aleksandra			8
Brynna	1	0	0
Chelsea	0	0	1
Dominique	0	0	0
Eunice	3	1	0
Fernando	2	2	4

*0 = don't know, 1 = know, 2 = friends, 3 = BFFs

Free Recall or Memory

- "Please list all the people you know in this group or organization."
 - Optional: "Indicate how well you know each of the people you listed using the following 3-point scale..."

Nomination Method

- "Please list your five best friends in this class."
- "Please list the five people you work with the most in this organization."

Nomination Method

- Often used in egocentric network data collection with caps of 15, 20, or 25 nodes.
- "Name 25 of your friends."
- "Now indicate which friends know each other friend. Does Person A know person B? Does person A know Person C?" And so on...
- More nodes = exponentially more ties/time.
 - Ties = [nodes x (nodes 1)] ÷ 2
 - 15 nodes = 105 ties; 25 nodes = 300 ties

Behavioral Methods

- Observe and record actual behavior in field or laboratory settings.
- Record small-group interactions.
 - Code who touches, looks at, interrupts, or speaks/listens to whom for each person.
- Examine who cites whom in a journal.
- Record trade or kin networks in the field.
- Record who wishes to contact whom at speed-dating events. Also: Sex networks.

										len									-
Women	m012	m013	m016	m017	m019	m025	m026	m201	m202	m203	m204	m206	m207	m208	m209	m210	m526	m551	Degree
f009	1	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	4
f010	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
f011	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	5
f012	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
f014	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f015	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2
f017	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
f019	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	3
f020	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	3
f022	0	0	1	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1	7
f033	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f034	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f035	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f038	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f201	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
f202	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
£307	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
£336	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
£514	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
f533	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
Degree	3	1	5	7	1	1	2	2	2	2	1	2	2	1	1	1	4	2	

Two-Mode Sexual Network: Sexual Relations among 39 People (18 Men, 21 Women), Their Degree Centrality, and Bar Patronage

Note. **Boldface**: degree centrality scores for men (bottom) and women (right). *Boldface italics*: person regularly attended a local bar. Source: De, Singh, Wong, Yacoub, and Jolly (2004, p. 283, Figure 1).

Figure 4. Sexual network sociogram of heterosexual pairings among 18 men (squares) and 21 women (circles) in Alberta, Canada (Table 3). Node size shows degree centrality. Black nodes show people who attended the same bar. Source: De, Singh, Wong, Yacoub, and Jolly (2004).

	m012	m013	m016	m017	m019	m025	m026	m201	m202	m203	m204	m206	m207	m208	m209	m210	m526	m551
m012	3	1	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0
m013	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m016	0	0	5	0	1	1	0	0	0	0	0	1	1	1	1	1	0	1
m017	1	0	0	7	0	0	1	1	1	0	0	1	0	0	0	0	1	0
m019	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
m025	0	0	1	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
m026	0	0	0	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0
m201	1	0	0	1	0	0	0	2	1	0	0	0	0	0	0	0	0	0
m202	1	0	0	1	0	0	0	1	2	1	1	0	0	0	0	0	1	1
m203	0	0	0	0	0	0	0	0	1	2	1	0	0	0	0	0	1	1
m204	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1
m206	0	0	1	1	0	1	0	0	0	0	0	2	1	1	1	0	1	1
m207	0	0	1	0	0	1	0	0	0	0	0	1	2	1	1	0	0	1
m208	0	0	1	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
m209	0	0	1	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
m210	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
m526	0	0	0	1	0	0	0	0	1	1	1	1	0	0	0	0	4	1
m551	0	0	1	0	0	1	0	0	1	1	1	1	1	1	1	0	1	2

Two-Mode Sexual Network Collapsed into a One-Mode Network among 18 Men Linked by 21 Women with Whom They Have Had Sex

Note. **Boldface**: degree centrality scores for men (diagonal). *Boldface italics*: man regularly attended a local bar. Source: De, Singh, Wong, Yacoub, and Jolly (2004, p. 283, Figure 1).

Sexual network among 18 men linked by women. Node sizes reflect degree centrality. Black nodes show people who attended same bar.

	f009	f010	f011	f012	f014	f015	f017	f019	f020	f022	f033	f034	f035	f038	f201	f202	£307	f336	f514	f533	f900
f009	4	0	1	0	0	1	0	1	0	0	1	1	1	0	1	1	1	1	0	0	0
f010	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f011	1	0	5	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	1	0	1
f012	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
f014	0	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0	1	0
f015	1	1	0	0	0	2	0	1	0	0	1	1	1	0	0	0	0	1	0	0	0
f017	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f019	1	0	1	0	0	1	0	3	0	1	1	1	1	0	0	0	0	1	1	0	1
f020	0	0	0	0	1	0	0	0	3	1	0	0	0	1	0	0	0	0	0	1	0
f022	0	0	1	1	1	0	0	1	1	7	0	0	0	1	0	0	0	0	0	1	0
f033	1	0	0	0	0	1	0	1	0	0	1	1	1	0	0	0	0	1	0	0	0
f034	1	0	0	0	0	1	0	1	0	0	1	1	1	0	0	0	0	1	0	0	0
f035	1	0	0	0	0	1	0	1	0	0	1	1	1	0	0	0	0	1	0	0	0
f038	0	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0	1	0
f201	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0
f202	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
f307	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
f336	1	0	0	0	0	1	0	1	0	0	1	1	1	0	0	0	0	1	0	0	0
f514	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
f533	0	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0	1	0
f900	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1

Two-Mode Sexual Network Collapsed into a One-Mode Network among 21 Women Linked by 18 Men with Whom They Have Had Sex

Note. **Boldface**: degree centrality scores for women (diagonal). *Boldface italics*: woman regularly attended a local bar. Source: De, Singh, Wong, Yacoub, and Jolly (2004, p. 283, Figure 1).

Sexual network among 21 women linked by men. Node sizes reflect degree centrality. Black nodes show people who attended same bar.

Web/Online Methods

- Collect your own survey data on the Web.
- Collect data from existing online social network sites or ask <u>scientists who have</u> <u>access to these data</u> (10³ to 10⁶ of nodes).
- Record data from academic department websites to see who hires whom.
- Download data from existing academic databases to examine citation and/or coauthorship networks in a field or journal.

Archival Methods

- Archival data can yield social networks
- Corporate or institutional board members
- An increasing amount of archival data, both old and new, is available on the Web.
- The lines separating survey, behavioral, online, and archival data collection methods are gradually disappearing (e.g., IMDb).
- 18 women attending 14 events (Davis et al., 1941)
- Medici influence, 1400-1434 (Pagdett & Ansell, 1993)

										Fai	nily								We	alth ^a
	Family	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Degree	Lira	Log
1.	Acciaiuol	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	10	4.00
2.	Albizzi	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	3	36	4.56
3.	Barbadori	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	2	55	4.74
4.	Bischeri	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	3	44	4.64
5.	Castellan	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	3	20	4.30
6.	Ginori	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	32	4.51
7.	Guadagni	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	1	4	8	3.90
8.	Lambertes	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	42	4.62
9.	Medici	1	1	1	0	0	0	0	0	0	0	0	0	1	1	0	1	6	103	5.05
10.	Pazzi	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	48	4.68
11.	Peruzzi	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	3	49	4.69
12.	Pucci	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3.48
13.	Ridolfi	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	3	27	4.43
14.	Salviati	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	2	10	4.00
15.	Strozzi	0	0	0	1	1	0	0	0	0	0	1	0	1	0	0	0	4	146	5.16
1 6 .	Tornabuon	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	3	48	4.68

Arranged Intermarriages among 16 Florentine Families (1394–1434) and Their Wealth (1427)

Note. ^aFamily net wealth in 1427 in thousands of Lira ("Lira") or log₁₀(Lira) ("Log"). Sources: Breiger and Pattison (1986); Kent (1978); Padgett and Ansell (1993).

Marriage Network Data

	Family	1	2	3	4	5	6	7	8	9	
1.	Acciaiuol	0	0	0	0	0	0	0	0	1	
2.	Albizzi	0	0	0	0	0	1	1	0	1	
3.	Barbadori	0	0	0	0	1	0	0	0	1	
4.	Bischeri	0	0	0	0	0	0	1	0	0	
5.	Castellan	0	0	1	0	0	0	0	0	0	
6.	Ginori	0	1	0	0	0	0	0	0	0	
7.	Guadagni	0	1	0	1	0	0	0	1	0	
8.	Lambertes	0	0	0	0	0	0	1	0	0	
9.	Medici	1	1	1	0	0	0	0	0	0	

Attribute (Wealth) Data

										Fai	mily								We	alth ^a
	Family	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Degree	Lira	Log
1.	Acciaiuol	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	10	4.00
2.	Albizzi	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	3	36	4.56
3.	Barbadori	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	2	55	4.74
4.	Bischeri	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	3	44	4.64
5.	Castellan	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	3	20	4.30
6.	Ginori	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	32	4.51
7.	Guadagni	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	1	4	8	3.90
8.	Lambertes	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	42	4.62
9.	Medici	1	1	1	0	0	0	0	0	0	0	0	0	1	1	0	1	6	103	5.05
10.	Pazzi	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	48	4.68
11.	Peruzzi	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	3	49	4.69
12.	Pucci	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3.48
13.	Ridolfi	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	3	27	4.43
14.	Salviati	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	2	10	4.00
15.	Strozzi	0	0	0	1	1	0	0	0	0	0	1	0	1	0	0	0	4	146	5.16
1 6 .	Tornabuon	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	3	48	4.68

Arranged Intermarriages among 16 Florentine Families (1394–1434) and Their Wealth (1427)

Note. ^aFamily net wealth in 1427 in thousands of Lira ("Lira") or log₁₀(Lira) ("Log"). Sources: Breiger and Pattison (1986); Kent (1978); Padgett and Ansell (1993).

Archival Research Examples

- MyPersonality Data: Facebook ego networks and "Big Five" personality traits (survey/archival/online).
- U.S. Supreme Court decisions, 1994–2005: Is Justice Kennedy a "clique broker"? (behavioral/archival/online).
 - Two-mode network: Justices by decisions
- Sovereign debt/lending among countries (behavioral/archival/online).

Part III: Analyzing Social Network Data

Social Network Programs

- Collecting/Analyzing Egocentric Data
 - EgoNet (also as an <u>R package</u>)
- Analyzing Ego-/Sociocentric Data
 - <u>UCINet</u>
 - Analyzing Social Networks
 - <u>ORA</u>
 - R: "sna" within the "statnet" meta-package

Some SNA Measures

- SNA software can generate useful measures
- Network level
 - Density (number of ties out of possible ties)
 - Number of components (separate groups)
- Node level
 - Centrality influence/importance measure
 - Indegee, Outdegree, Betweeness, etc.

SNA Metrics Example

- Nodes: Individual universities
- Ties: Hiring relations; who hires whom
- Centrality: Measures of importance and influence in a social network.
 - In-degree: Number of PhDs from one university hired by other universities.
 - Betweenness: Number of hiring paths that pass through a university.

Empirical Examples from My Research

- Hiring Networks in Academic Psychology
- Classroom Friendships and Aggression
- Co-author Networks and Citation Counts
- Popularity and Sexual Behavior in Social Fraternities and Sororities
- Classroom Friendships and Attachment

Example 1: Hiring Networks in Academic Psychology

Psychology Hiring Example

- American Association of Universities (AAU)
 - 63 current or former members
 - "Research I"; produce 52% of U.S. PhDs
- Info. obtained from Psych. Dept. websites
 - 1,936 professors; 36% women, 64% men
 - Current and PhD-conferring universities
 - PhD year: 1,600 of 1,936 (83%)
 - Range: 1946-2011; M = 1986, SD = 15

Reratin 14 0.51 0.06 keratin 14 0.51 0.06 keratin 19 0.85 0.45 keratin 5 2.21 0.87 laminin bata 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.20 1.00 1.06 0.59 1.43 0.5 3 0.31 0.60 0.20 0.41 1.14 1.77 0.61 0.42 0.42 0.01 0.44 0.43 0.44 </th <th>0.3 2.27 0.03 0.35 0 1.45 0.30 0.03 2.95 0 0.20 20.59 0.62 9.72 6 0.45 1.26 0.35 1.67 6 0.45 1.26 0.35 1.67 7 0.50 0.29 1.46 1.05 1.35 1.05 2.03 2.34 0.50 0.29 1.46 1.05 1.35 1.05 2.03 2.34 0.50 0.29 1.46 1.05 1.35 1.05 2.03 2.34 0.55 1.91 2.12 1.39 0.04 1.01 2.2 2.95 2.72 0.04 1.01 2.0 0.04 1.01 2.12 2.95 2.72 0.13 1.51 4.44 0.14 1.33 1.51 4.44 0.14 1.51 4.44 14.31 0.2</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>5.31 5.42 1.59 0.61 1.51 1.33 4.56 0.90 3.04 2.15 0.01 5.93 1.50 2.15 0.20 5.93 1.50 2.15 0.20 0.20 7.50 2.15 0.96 0.72 2.55 0.94 0.04 49.66 0.67 2.16 1.66 1.16 1.40 2.69 0.97 1.52 2.73 1.12 3.55 4.90 1.40 2.69 0.97 1.52 2.73 1.12 3.55 4.90 0.53 1.06 0.04 0.04 0.92 0.86 0.04 0.04 0.92 0.86 0.04 0.04 0.92 0.86 0.04 0.04 0.92 0.86 0.04 0.86 0.11 1.69 0.14 3.46 1.87 3.39 0.08 1.82</th>	0.3 2.27 0.03 0.35 0 1.45 0.30 0.03 2.95 0 0.20 20.59 0.62 9.72 6 0.45 1.26 0.35 1.67 6 0.45 1.26 0.35 1.67 7 0.50 0.29 1.46 1.05 1.35 1.05 2.03 2.34 0.50 0.29 1.46 1.05 1.35 1.05 2.03 2.34 0.50 0.29 1.46 1.05 1.35 1.05 2.03 2.34 0.55 1.91 2.12 1.39 0.04 1.01 2.2 2.95 2.72 0.04 1.01 2.0 0.04 1.01 2.12 2.95 2.72 0.13 1.51 4.44 0.14 1.33 1.51 4.44 0.14 1.51 4.44 14.31 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.31 5.42 1.59 0.61 1.51 1.33 4.56 0.90 3.04 2.15 0.01 5.93 1.50 2.15 0.20 5.93 1.50 2.15 0.20 0.20 7.50 2.15 0.96 0.72 2.55 0.94 0.04 49.66 0.67 2.16 1.66 1.16 1.40 2.69 0.97 1.52 2.73 1.12 3.55 4.90 1.40 2.69 0.97 1.52 2.73 1.12 3.55 4.90 0.53 1.06 0.04 0.04 0.92 0.86 0.04 0.04 0.92 0.86 0.04 0.04 0.92 0.86 0.04 0.04 0.92 0.86 0.04 0.86 0.11 1.69 0.14 3.46 1.87 3.39 0.08 1.82
Iaminin gamma 2 8.90 0.93 hysesomall sialythransferare 0.71 3.02 maspin 2.49 0.77 mdm-2 81.46 4.06 myosin light chain 1.96 0.22 myosin light chain 2.39.65 10.53 M-ras 0.50 0.27 mestin 0.90 1.31 unknown 12a 6.49 0.74 unknown 27b2 0.79 0.62 unknown 27b2 0.79 0.62 unknown 27b2 0.79 0.62 unknown 31g 1.35 0.67 unknown 42h 0.56 0.16 unknown 43(1) 1.33 0.85 unknown 47h 2.02 1.69 unknown 77 4.57 0.60	0.36 0.27 14.98 0.80 1.41 0.77 14.25 0.76 0.88 0.95 7.12 0.76 0.88 0.95 0.84 1.17 1.39 4.23 4.71 0.32 0.29 0.28 1.11 0.32 0.29 0.28 1.11 0.45 0.27 5.55 0.74 0.45 0.27 0.85 1.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.31 1.06 1.26 0.98 2.707 0.06 11.45 6.87 1.07 0.06 11.45 6.87 1.03 0.47 7.28 5.76 0.65 1.03 0.47 7.28 5.76 0.01 1.43 5.75 2.06 5.09 0.01 1.43 5.75 2.86 5.09 0.01 1.43 5.75 2.86 5.09 0.01 1.43 5.75 2.86 5.09 0.01 1.44 1.25 1.56 0.025 0.001 0.001 0.002 0.000 0.001 0.001 0.002 0.002 0.001	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
unknown 100r PDAC-2 0.83 0.08 0.08 0.08 0.08 0.26 0.19 0.10 0.00 0.	National 2231 0.54 1.56 2.52 2.51 0.56 1.56 2.52 2.51 0.54 1.56 2.52 2.51 0.54 2.51 0.55 1.54 2.51	esearch C	29.81 1.21 2.49 3.85 2.39 10.47 1.28 0.08 0.08 1.20 1.02 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.47 0.53 0.53 0.70 0.47 0.53 0.70 0.47 1.3 0.55 0.70 0.47 1.3 0.55 0.70 0.47 1.3 0.55 0.70 0.47 1.3 0.55 0.70 0.47 1.3 0.55 0.70 0.06 0.05 0.0	0.03 1.55 0.03 1.74 2.61 0.39 16.01 5.67 1.37 1.31 0.40 0.54 1.30 1.19 0.35 0.64 0.50 0.71 1.61 2.40 0.55 2.70 3.99 2.04	1.25 5.19 1.25 5.19 2.91 1.67 1.48 0.02 0.05 0.99 1.20 0.05 0.99 1.20 0.05 0.99 2.78 2.78 2.78 2.67 2.15 1.46 4.99 2.04 2.58 3.58 4.99 2.04 2.58 3.58 4.99 2.04 2.57 1.46 4.67 3.01 2.57 1.38 0.05 1.20 0.57 1.20 0.05 1.20 0.05 1.20 0.05 1.20 0.05 1.20 0.05 1.20 0.05 1.20 0.05 1.20 0.05 1.20 0.05 1.20 0.05 1.20 0.05 1.20 0.05 1.20 0.05 1.20 0.05 1.20 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.30 0.05 1.20 0.67 1.20 0.67 1.20 0.67 1.20 0.67 1.20 0.67 1.20 0.67 1.20 0.67 1.20 0.05 1.20 0.07 1.20 0.07 1.20 0.07 1.20 0.07 1.00 0.78
RAR alpha RAR alpha RAR beta SSAT 1.02 0.66 VDAC-2/por in vDAC-2/por in 0.99 0.48 0.66 0.66 0.26 c-fos 1.81 0.64 0.26 0.64 0.26 0.88 0.88 0.64 0.26 0.88 0.82 0.82 0.82 0.82 0.82 0.81 0.95 0.61 0.95 0.82 0.82 0.82 0.82 0.82 0.82 0.81 0.95 0.61 0.95 0.61 0.95 0.82 0.84 0.95 0.82 0.82 0.82 0.82 0.84 0.95 0.82 0.82 0.84 0.95 0.82 0.84 0.95 0.82 0.84 0.95 0.82 0.84 0.95 0.82 0.84 0.95 0.82 0.84 0.84 0.85 0.82 0.84 0.84 0.85 0.84 0.84 0.85 0.84 0.85 0.84 0.85 0.85 0.84 0.85 0.8	J. S J. J. J. S J. J. J. J. S J. J. J. J. J. J. J. J.	77 1.57 4.93 3.50 6.24 0.11 5 59 2.60 7.27	Report	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.64 6.76 1.50 0 0.55 0.02 0.57 0 0.67 2.02 0.14 0 1.24 3.01 2.12 1 0.08 0.08 4.53 2 1.01 2.62 2.05 1 4.17 1.56 0.65 0 0.26 7.35 2.63 1 0.91 11.17 1.28 0.3 0.91 11.17 1.28 0.3 0.91 0.01 1.58 1.3 0.93 0.01 1.58 1.3 0.89 3.79 3.39 1.3 5.06 5.03 1.26 1.3 0.74 0.01 1.87 0.89 3.96 0.07 0.07 1.29 3.7
ownnown 181 0.63 0.36 unknown 751(1) 1.15 0.12 unknown 751(2) 0.59 0.70 unknown 7038a 1.64 1.74 unknown 710 24.75 3.25 1 unknown 712 0.12 0.89 0.59 unknown 72 3.79 2.16 1.59 1.59 unknown 32-44 2.39 1.59 1.59 1.59 unknown 32-54 2.45 0.63 1.24 0.45 PA0 1.24 0.49 1.24 0.49	4.39 2.89 0.54 0.99 52 2.09 1.87 0.23 0.20 0.3 1.45 1.00 2.68 1.39 3.5 2.44 1.52 2.99 0.73 2.09 1.47 9.60 0.23 9.85 0.9 1.47 9.60 0.23 9.85 0.9 0.12 0.12 2.40 1.09 3.7 1.37 1.63 1.10 3.75 0.73 1.37 1.63 1.10 3.75 0.73 0.54 0.73 0.62 1.29 0.07 0.54 0.73 0.57 0.23 0.9 0.54 0.73 0.57 0.23 0.23 0.15 0.38 0.37 0.23 0.23 0.15 0.38 0.37 0.22 0.33	99 2.60 7.27 1.40 1.99 0.11 6 25 1.94 1.69 2.86 2.21 M0 0 99 2.05 1.23 1.58 1.26 0.40 1 04 2.23 0.12 2.27 1.22 0.12 6 135 1.45 1.49 1.92 2.76 0.04 7 135 1.34 2.25 3.41 2.56 0.06 7 135 50.60 37.94 0.05 0.52 MD 13 13 5.26 2.56 0.04 0.04 17 2 2 3.26 2.56 0.04 0.04 10.46 27 2 3.61 3.39 3.06 2.57 2.61 0.12 0 2 3.61 3.39 3.06 2.57 2.61 0 1 3.96 2.45 0.99 0.59 7.96 0	98 2.93 0.43 2.10 4.0 0.03 0.03 2.79 1.22 1.6 0.9 0.03 2.79 1.22 1.6 15 0.67 2.48 1.79 1.9 15 0.67 2.48 1.79 1.9 75 0.12 3.78 4.37 4.9 75 0.04 6.17 3.81 4.9 76 0.05 3.09 3.16 2.8 71 0.05 0.05 0.52 0.02 72 0.04 0.72 0.62 0.04 71 0.05 3.09 3.16 2.8 72 0.04 0.72 0.62 0.04 72 4.92 2.20 7.01 1.75 73 2.43 2.72 2.21 0.94	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.14 0.12 0.12 0.12 2.66 2.84 1.32 1.43 0.11 65.24 0.11 0.11 5.10 0.03 0.43 2.03 4.01 0.99 0.09 3.31 2.65 3.05 2.28 2.93 0.12 0.12 5.23 4.73 0.06 0.06 5.13 2.20 0.05 0.05 3.41 0.05 0.05 0.05 3.41 0.05 0.04 19.90 1.01 1.39 5.67 0.12 3.06 0.12

Network Space

- Only examined inter-AAU psychology hires
- Excluded non-AAU universities and hires
- 1,936 ties (hires) among 65 nodes (AAU)

AAU Hiring Network

Betweenness Centrality

Network Centrality and Department Productivity & Prestige

Variable	Μ	SD	1	2	3
1. In-Degree	17.91	11.77			
2. Betweenness ^{1/2}	6.73	3.39	0.72		
3. NRC score	60.2	6.25	0.88	0.65	
4. USNews score	3.85	0.5	0.86	0.62	0.89

Ns = 60-65. All ps < .001.

Network Centrality and Department Productivity & Prestige

Variable	Μ	SD	1	2	3
1. In-Degree	17.91	11.77			
2. Betweenness ¹ /2	6.73	3.39	0.72		
3. NRC score	60.2	6.25	0.88	0.65	
4. USNews score	3.85	0.5	0.86	0.62	0.89

 $N_s = 60-65$. All $p_s < .001$.

Network Centrality and Department Productivity & Prestige

Variable	Μ	SD	1	2	3
1. In-Degree	17.91	11.77			
2. Betweenness ^{1/2}	6.73	3.39	0.72		
3. NRC score	60.2	6.25	0.88	0.65	
4. USNews score	3.85	0.5	0.86	0.62	0.89

 $N_s = 60-65$. All $p_s < .001$.

Limitations

.....

Limitations

- Sample depends on accuracy of websites
- Limited in scope to AAU institutions
 - But where do we stop? Research I or II? International? Business schools?
- Does not account for hires/positions held in between PhD and current position
- Future research should expand network scope and intermediate hires/positions

Example 2: Classroom Friendships and Aggression

Friendship and Aggression 46 undergraduates in a psychology class

- 14 men, 32 women
- Asked about friendships at end of semester:
 - 1=acquaintance, 2=friend, 3=close friend
- Focussed on in-degree (i.e., popularity)
- Completed the Brief Aggression Questionnaire.
 - Subscales: Physical Aggression, Verbal Aggression, Anger, and Hostility.
- Are more aggressive students liked less?

Node Size: Aggression

In-Degree and Aggression

Friendship Network

Node Size: Hostility

In-Degree and Hostility

Example 3: Coauthor Networks and Citation Counts

Author Centrality & Citation

- Examined 1,770 articles published in J.
 Pers. & Soc. Psych. (JPSP), 1995–2005
- Assessed co-authorship networks (who's published with whom)
- Standardized and averaged log in-degree and log betweenness centrality (r = .73)
- Correlated composite centrality with log citation counts per article.
- Are more central authors cited more often?

1st-author centrality & citations

Co-author centrality & citations

1st-author centrality & citations

Example 4: **Popularity and Sexual Behavior in Social** Fraternities and Sororities

Popularity & Sex Behavior

- 3 fraternities, 2 sororities (N = 222)
- Friendship networks at three time points across the semester
- Social network analyses of change in friendship indegree across time (T1, T2, T3)
- Change in indegree (popularity) moderated the relationship betwen T1 and T3 sociosexual behavior (e.g., one-night stands)
- Measured Greek identity and sociosexuality

Greek Identity Scale Items $\alpha = .65$

It is likely that I will vote for members of my [fraternity/sorority] when they run for office in the student government.

It is important to me that my [fraternity/sorority] is the best.

I see myself as a supporter of my [fraternity/sorority].

My friends support my [fraternity/sorority].

I often try to persuade other to join my [fraternity/sorority].

I regularly attend events sponsored by my [fraternity/sorority].

I often publicly display my support for my [fraternity/sorority] through hats, key rings, clothing, and/or other items.

I often decorate my car with stickers, flags, magnets, license plate frames and/or other items promoting my [fraternity/sorority].

I see myself as belonging to the same group as other members of my [fraternity/ sorority].

It is likely that I will vote for members of my [fraternity/sorority] when they run for homecoming king or queen.

I am proud to be a member of my [fraternity/sorority].

My closest friends are also members of my [fraternity/sorority].

Sociosexual Orientation Inventory $\alpha = .89$

- With how many different partners have you had sex (sexual intercourse) within the past year?
- How many partners do you foresee yourself having sex with during the next five years?
- With how many different partners have you had sex on one and only one occasion?
- How often do you fantasize about having sex with someone other than your current partner?
- Sex without love is okay.
- I can imagine myself being comfortable and enjoying "casual" sex with different partners.
- I would have to be close to someone before I could feel comfortable having sex with him or her. [reversed]

Conclusions

- Greek Identity positively related to popularity and gregariousness at Time 1.
- Change in sociosexual behavior (having more sex partners) related to increased popularity in fraternities, but not sororities.
- Supports a sexual double-standard explanation.
- Future direction: Model bidirectional causality between popularity and sexual behavior in men.

Example 5: Classroom Friendship and Attachment

Friendship and Attachment

- 2 college psychology classes (Ns = 44, 57)
- Completed friendship networks (valued)
- Completed Big Five personality traits
- Completed attachment measures: Anxious and avoidant dimensions (Fraley et al., 2000)
- Measured network popularity with indegree (log eigenvector) centrality
- Are more avoidant people less likely to be nominated as close friends by others?

Fig. 2. Sociogram (social network) of 44 undergraduates enrolled in an evolutionary psychology class, omitting two isolates (unconnected nodes). Tie thickness reflects friendship strength (0 = don't know the person, 1 = acquaintance, 2 = friend, 3 = close *friend*). Node size reflects raw eigenvector indegree centrality (a measure of popularity).

Fig. 3. Sociogram (social network) of 67 undergraduates enrolled in a social psychology class, omitting eight isolates (unconnected nodes). Tie thickness reflects friendship strength (0 = don't know the person, 1 = acquaintance, 2 = friend, 3 = close friend). Node size reflects raw eigenvector indegree centrality (a measure of popularity).

Friendship and Attachment

Table 2. Indegree (log eigenvector) as functions of trait personality and attachment.

	Study 1					Study 2			
Variable	b	<i>t</i> (36)	р	rp	b	t(59)	р	rp	
Extraversion	0.083	3.15	.003	.46	-0.002	-0.12	.905	02	
Agreeableness	-0.027	-0.68	.498	11	-0.028	-0.93	.357	12	
Conscientiousness	-0.040	-1.46	.153	24	-0.031	-1.03	.308	13	
Neuroticism	0.093	2.24	.031	.35	-0.021	-0.80	.426	10	
Openness	0.095	2.42	.021	.37	0.042	1.53	.131	.20	
Anxious attachment	0.002	0.07	.945	.01	0.042	2.40	.020	.30	
Avoidant attachment	-0.039	-1.99	.054	31	-0.035	-2.16	.035	27	

Webster, Gesselman, and Crosier (2016)

	Studies 1 and 2 ($N = 111$)				
Variable	b	t(95)	p≤	r _p [95% CI]	
Extraversion	0.040	2.39	.019	.24 [.04, .42]	
Agreeableness	-0.027	- 1.10	.273	11 [30, .09]	
Conscientiousness	- 0.036	-1.74	.086	—.18 [—.37, .02]	
Neuroticism	0.036	1.46	.148	.15 [05, .34]	
Openness	0.068	2.84	.005	.28 [.08, .46]	
Anxious attachment	0.022	1.49	.139	.15 [05, .34]	
Avoidant attachment	-0.037	-2.89	.005	28 [46,08]	
Study	-0.131	-4.73	.001	44 [59,26]	
Study \times extraversion	-0.086	-2.54	.013	25 [43,05]	
Study × agreeableness	- 0.00 1	-0.02	.982	00 [<i>-</i> .20, .20]	
Study × conscientiousness	0.008	0.20	.838	.02 [18, .22]	
Study × neuroticism	-0.114	-2.31	.023	23 [41,03]	
Study × openness	-0.053	- 1.11	.270	11 [30, .09]	
Study × anxious attachment	0.040	1.38	.171	.14 [06, .33]	
Study × avoidant attachment	0.005	0.19	.852	.02 [18, .22]	

Let's Think of SNA Projects!

- A social network of attendees at this workshop (e.g., who knows whom, who's published together)?
- What are some of your research projects that might benefit from SNA methods?
- What are some problems and obstacles to using SNA methods in your own research?

Acknowledgements

- Adam Dzedzy and Christopher McCarty (University of Florida)
- Tatiana Orozco (Veterans Administration)
- Corinne Novell (Purdue University)
- Amanda Gesselman (Indiana University Bloomington)
- Benjamin Crosier (Dartmouth College)
- Keivan Zolfaghari (Google)
- Allan Clifton (Vassar College)
- Rachel Greenspan (University of California, Irvine)
- Rosanna Guadagno (University of Texas at Dallas)
- Patrick Ewell (Kenyon College)
- Carrie Veronica Smith (University of Mississippi)

Thank You!

