An Introduction to
 Social Network Analysis

Gregory D. Webster Dept. of Psychology University of Florida

SPSP 2017

San Antonio, Texas
January 20, 2017
Slides: http://tinyurl.com/spsp-sna
Paper: http://tinyurl.com/sna-paper

Workshop Overview

Three Parts
I. What is a social network?
II. How do we find and collect data on social networks?
III.How do we analyze social network data?

$$
\begin{gathered}
\text { Part I: } \\
\text { What Is a } \\
\text { Social Network? }
\end{gathered}
$$

Kevin Bacon

6 Degrees of Kevin Bacon

Small-World Experiment

Small-World Experiment

- What is the average path length from one person to another in the U.S.?
- For example, how many steps exist between you and Barak Obama (or a randomly chosen person somewhere)?
- Average length is about 5.5 to 6 links.
- "Six Degrees of Separation"
- Is changing with online social networks

Small-World Experiment

- But it's no longer just six degrees; it's changing with online social networks.

Year	Distance	
2008	5.28	
2011	4.74	
2016	3.57	
Distances as reported in Feb 2016 ${ }^{[38]}$		

Online Social Networks

- Online social networks are everywhere!
- Friendster
- MySpace
- Facebook
- Google+
- Linkedln
- Twitter
facebook

Mark Zuckerberg

6bocalonand Wivk

a
a
a

等等

Hast Mrfit Arreant?
(If Send Nassoge F Role

IL 4 manet tranat

- Instagram
hat Is a Social Netwo
- A social network is a representation of nodes and the relationships between individual nodes (i.e., ties, links, paths).
- Nodes can be people, schools, corporations, states, countries, events, places, films, bands, groups, etc.
- Ties can be (dis)liking, friendship, acquaintance, co-authorship, citation, debt/credit, spatial relationships, common attendance, agreement, etc.

What Is a Social Network?

- Nodes: Individual universities
- Ties: Hiring relations; who hires whom

Indiana
 Colorado

Florida
Illinois

- Egocentric vs. Sociocentric
- One-Mode vs. Two-Mode Networks
- Directed vs. Bidirectional (Non-Directed) Ties
- Valued vs. Binary (Non-Valued) Ties

Ego- vs. Sociocentric

- Egocentric or "Personal" Networks
- Who do you know?
- How well do you know them?
- Do those people know each other?
- How well do they know each other?
- Everyone knows you, the ego
- "Star" network, with ego at center

An Egocentric Network

- Ego knows everyone (by definition).
- Person A knows B and G (and ego).
- Persons D and E know only ego.

An Egocentric Network

- Egocentric networks are ideal for studying people's social support networks.
- Researchers are often interested in how dense people's ego networks are.
- Some programs: EgoNet, E-Net
- New research focusing on overlap among couples' ego networks (duocentric networks), and how that relates to relationship outcomes.
(a) With Spouses

- wife alter - husband alter \bullet both alter \quad husband Δ wife

Ego- vs. Sociocentric

- Sociocentric or "Whole" Networks
- Network bound/defined by something other than you/self/ego. For example:
- Everyone on Facebook, Twitter, etc.
- Everyone in your home department
- Everyone attending SPSP/workshop
- Do all these people know each other?
- How well do they know each other?

A Sociocentric Network

Who Hires Whom in AAU Psychology Depts. Association of American Universities

1- vs. 2-Mode Networks

- Most social networks are "one-mode."
- In an association matrix, the row labels are the same as the column labels; the matrix is square.

Liking	Alex	Brandy	Cecilia
Alex	-	1	0
Brandy	1	-	0
Cecilia	0	$\boxed{1}$	-

1- vs. 2-Mode Networks

- Some social networks are "two-mode."
- In an association matrix, the row labels are different from the column labels; the matrix is often rectangular.

Present	Jan.	Feb.	March	April
Alex	1	1	0	1
Brandy	1	1	0	1
Cecilia	0	0	1	1

1- vs. 2-Mode Networks

- We can analyze two-mode data as onemode data by collapsing one dimension,
- We can have a social network of either people (how are people linked by events) or events (which events are linked by people).

Present	Jan.	Feb.	March	April
Alex	1	1	0	1
Brandy	1	1	0	1
Cecilia	0	0	1	1

Present	Jan.	Feb.	March	April
Alex	1	1	0	1
Brandy	1	1	0	1
Cecilia	0	0	1	1

Collapsing across events...

Present	Alex	Brandy	Cecilia
Alex	-	$\boxed{3}$	1
Brandy	3	-	1
Cecilia	1	1	-

Present	Jan.	Feb.	March	April
Alex	1	1	0	1
Brandy	1	1	0	1
Cecilia	0	0	1	1

Collapsing across people...

Present	Jan.	Feb.	March	April
Jan.	-	2	0	2
Feb.	2	-	0	2
March	0	0	-	1
April	2	2	1	-

Some 2-Mode Examples

- People and events (e.g., meetings)
- People and places
- Supreme court justices (people) and their decisions (events)
- People and survey items (clustering)
- People in movies (IMDb, Kevin Bacon)
- People in bands
- Characters appearing in common episodes or chapters (Game of Thrones)

- Note: Collapsing asymmetric two-mode data produce symmetric one-mode data.

Present	Jan.	Feb.	March	April
Alex	1	1	0	1
Brandy	1	1	0	1
Cecilia	0	0	1	1

Collapsing across people...

Present	Jan.	Feb.	March	April
Jan.	-	2	0	2
Feb.	2	-	0	2
March	0	0	-	1
April	2	2	1	-

Directed/non-directed Ties

- Social networks may be either directed (symmetric about the matrix diagonal) or non-directed (asymmetric...diagonal).
- A liking matrix will often have directed, unreciprocated, asymmetric ties.

Liking	Alex	Brandy	Cecilia
Alex	-	1	0
Brandy	1	-	0
Cecilia	0	1	-

Directed/non-directed Ties

- An acquaintance matrix will have nondirected, reciprocated, symmetric ties.
- Example: Facebook data produce nondirected, reciprocated, symmetric ties.

Liking	Alex	Brandy	Cecilia
Alex	-	1	0
Brandy	1	-	1
Cecilia	0	1	-

- Most social networks have non-valued or dichotomous ties, using only 1 s and 0 s .
- Either a person knows, likes, is friends with another person or not.

Liking	Alex	Brandy	Cecilia
Alex	-	1	0
Brandy	1	-	0
Cecilia	0	1	-

- Some social networks have valued ties, using ordinal, ratio, or continuous data.
- We might ask how much a person knows, likes, or is friends with another.

Liking	Alex	Brandy	Cecilia
Alex	-	3	0
Brandy	2	-	0
Cecilia	0	1	-

$0=$ don't know, $1=$ know, $2=$ friends, $3=$ EFFs

Valued Ties: Examples

- Survey data of friendship strength
- Some egocentric data
- Networks of debt and credit
- Trade networks using economic data
- Note: Collapsing dichotomous two-mode data can produce valued one-mode data.

Present	Jan.	Feb.	March	April
Alex	1	1	0	1
Brandy	1	1	0	1
Cecilia	0	0	1	1

Collapsing across people...

Present	Jan.	Feb.	March	April
Jan.	-	2	0	2
Feb.	2	-	0	2
March	0	0	-	1
April	2	2	1	-

- Note: Some social network metrics only work with dichotomous data, so this..

Present	Jan.	Feb.	March	April
Jan.	-	2	0	2
Feb.	2	-	0	2
March	0	0	-	1
April	2	2	1	-

Becomes this...

Present	Jan.	Feb.	March	April
Jan.	-	1	0	1
Feb.	1	-	0	1
March	0	0	-	1
April	1	1	1	-

Assumptions of Social Networks

- Defining Network Space or Scope
- Networks as Units of Analysis

Network Space or Scope

- Both ego- and sociocentric researchers should define their network space or scope prior to data collection.
- Egocentric: How many people? 25?
- Sociocentric: Network boundary?
- All Psych. Depts. in the world?
- U.S. Psych. Depts.?
- "Research-l" Depts.?
- AAU Depts.?

Units of Analysis

- Single Ego- or Sociocentric Network
- Individual nodes are units of analysis
- Multiple Ego- or Sociocentric Networks
- Either nodes or networks can be units of analysis (similar to persons in groups).
- Can use a mixed- or multilevel model approach: Nodes nested within networks.
- Examples: Liking data from 30 classes, Egocentric data from 100 people, etc.

Part II: Finding and Collecting Social Network Data

Finding and Collecting Social Network Data

- Survey Methods
- Behavioral Methods
- Web/Online Methods
- Archival Methods

Survey Methods

- Sociocentric or Whole Networks
- Simply ask the all group members who knows, likes, is friends with whom.
- Can be valued or dichotomous ties
- Roster/checklist method
- Free recall or memory method
- Nomination method (name 5 friends)

Roster/Checklist Method

 Aleksandra's checklist:Brynna's checklist:

Name	Closeness
Aleksandra	-
Brynna	1
Chelsea	0
Dominique	0
Eunice	3
Fernando	2

Name	Closeness
Aleksandra	1
Brynna	-
Chelsea	0
Dominique	1
Eunice	3
Fernando	0

$0=$ don't know, $1=$ know, $2=$ friends, $3=$ BFFs

Roster/Checklist Method

Aleksandra's checklist: Multiple measures

Name	Closeness*	Coauthor	Cited
Aleksandra	-	-	8
Brynna	1	0	0
Chelsea	0	0	1
Dominique	0	0	0
Eunice	3	1	0
Fernando	2	2	4

Free Recall or Memory - "Please list all the people you know in this group or organization."

- Optional: "Indicate how well you know each of the people you listed using the following 3-point scale..."
1.Pat-1
2.Sam - 3
3.Jim - 1
4.Frank - 2

Nomination Method

- "Please list your five best friends in this class."
- "Please list the five people you work with the most in this organization."

1.
2.
3.
4.

Nomination Method

- Often used in egocentric network data collection with caps of 15,20 , or 25 nodes.
- "Name 25 of your friends."
- "Now indicate which friends know each other friend. Does Person A know person B? Does person A know Person C?" And so on...
- More nodes = exponentially more ties/time.
- Ties $=[$ nodes $\times($ nodes -1$)] \div 2$
- 15 nodes $=105$ ties; 25 nodes $=300$ ties

Behavioral Methods

- Observe and record actual behavior in field or laboratory settings.
- Record small-group interactions.
- Code who touches, looks at, interrupts, or speaks/listens to whom for each person.
- Examine who cites whom in a journal.
- Record trade or kin networks in the field.
- Record who wishes to contact whom at speed-dating events. Also: Sex networks.

Women	Men																		Degree
	m012	m013	m016	m017	m019	m025	m026	m201	m202	m203	m204	m206	m207	m208	m209	m210	m526	m551	
f009	1	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	4
f010	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
$f 011$	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	5
f012	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
J014	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f015	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2
f017	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
f019	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	3
f020	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	3
$\mathrm{f022}$	0	0	1	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1	7
0033	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f034	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f035	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f038	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f201	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
f202	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f307	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
P336	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f514	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
f533	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
9900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
Degree	3	1	5	7	1	1	2	2	2	2	1	2	2	1	1	1	4	2	-

Note. Boldface: degree centrality scores for men (bottom) and women (right). Boldface italics: person regularly attended a local bar. Source: De, Singh, Wong, Yacoub, and Jolly (2004, p. 283, Figure 1).

Figure 4. Sexual network sociogram of heterosexual pairings among 18 men (squares) and 21 women (circles) in Alberta, Canada (Table 3). Node size shows degree centrality. Black nodes show people who attended the same bar. Source: De, Singh, Wong, Yacoub, and Jolly (2004).

	m012	m013	m016	m017	m019	m025	m026	m201	m202	m203	m204	m206	m207	m208	m209	m210	m526	m551
m 012	3	1	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0
m013	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m016	0	0	5	0	1	1	0	0	0	0	0	1	1	1	1	1	0	1
m017	1	0	0	7	0	0	1	1	1	0	0	1	0	0	0	0	1	0
m019	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
m025	0	0	1	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
m026	0	0	0	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0
m201	1	0	0	1	0	0	0	2	1	0	0	0	0	0	0	0	0	0
m202	1	0	0	1	0	0	0	1	2	1	1	0	0	0	0	0	1	1
m203	0	0	0	0	0	0	0	0	1	2	1	0	0	0	0	0	1	1
m204	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1
m206	0	0	1	1	0	1	0	0	0	0	0	2	1	1	1	0	1	1
m207	0	0	1	0	0	1	0	0	0	0	0	1	2	1	1	0	0	1
m208	0	0	1	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
m209	0	0	1	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
m210	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
m526	0	0	0	1	0	0	0	0	1	1	1	1	0	0	0	0	4	1
m551	0	0	1	0	0	1	0	0	1	1	1	1	1	1	1	0	1	2

Note. Boldface: degree centrality scores for men (diagonal). Boldface italics: man regularly attended a local bar.
Source: De, Singh, Wong, Yacoub, and Jolly (2004, p. 283, Figure 1).

Sexual network among 18 men linked by women. Node sizes reflect degree centrality. Black nodes show people who attended same bar.

Two-Mode Sexual Network Collapsed into a One-Mode Network among 21 Women Linked by 18 Men with Whom They Have Had Sex

	1009	f010	f011	f012	f014	f 015	1017	019	f020	$\mathrm{f022}$	$\mathrm{f033}$	f034	1035	f038	1201	f202	f307	f336	f514	f533	1900
f009	4	0	1	0	0	1	0	1	0	0	1	1	1	0	1	1	1	1	0	0	0
$\mathrm{f010}$	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f011	1	0	5	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	1	0	1
f012	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
f014	0	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0	1	0
f015	1	1	0	0	0	2	0	1	0	0	1	1	1	0	0	0	0	1	0	0	0
f017	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f019	1	0	1	0	0	1	0	3	0	1	1	1	1	0	0	0	0	1	1	0	1
f 020	0	0	0	0	1	0	0	0	3	1	0	0	0	1	0	0	0	0	0	1	0
f 022	0	0	1	1	1	0	0	1	1	7	0	0	0	1	0	0	0	0	0	1	0
0033	1	0	0	0	0	1	0	1	0	0	1	1	1	0	0	0	0	1	0	0	0
f034	1	0	0	0	0	1	0	1	0	0	1	1	1	0	0	0	0	1	0	0	0
f035	1	0	0	0	0	1	0	1	0	0	1	1	1	0	0	0	0	1	0	0	0
f038	0	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0	1	0
f201	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0
f202	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
f307	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
f336	1	0	0	0	0	1	0	1	0	0	1	1	1	0	0	0	0	1	0	0	0
f514	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
f533	0	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0	1	0
f 900	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1

Note. Boldface: degree centrality scores for women (diagonal). Boldface italies: woman regularly attended a local bar. Source: De, Singh, Wong, Yacoub, and Jolly (2004, p. 283, Figure 1).

Sexual network among 21 women linked by men. Node sizes reflect degree centrality. Black nodes show people who attended same bar.

Web/Online Methods

- Collect your own survey data on the Web.
- Collect data from existing online social network sites or ask scientists who have access to these data (10^{3} to 10^{6} of nodes).
- Record data from academic department websites to see who hires whom.
- Download data from existing academic databases to examine citation and/or coauthorship networks in a field or journal.

Archival Methods

- Archival data can yield social networks
- Corporate or institutional board members
- An increasing amount of archival data, both old and new, is available on the Web.
- The lines separating survey, behavioral, online, and archival data collection methods are gradually disappearing (e.g., IMDb).
- 18 women attending 14 events (Davis et oll., 1941)
- Medici influence, 1400-1434 (Pagdett \& Ansell, 1993)

Arranged Intermarriages among 16 Florentine Families (1394-1434) and Their Wealth (1427)

Family																	Degree	Wealth ${ }^{\text {a }}$	
Family	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Lira	Log
1. Acciaiuol	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	10	4.00
2. Albizzi	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	3	36	4.56
3. Barbadori	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	2	55	4.74
4. Bischeri	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	3	44	4.64
5. Castellan	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	3	20	4.30
6. Ginori	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	32	4.51
7. Guadagni	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	1	4	8	3.90
8. Lambertes	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	42	4.62
9. Medici	1	1	1	0	0	0	0	0	0	0	0	0	1	1	0	1	6	103	5.05
10. Pazzi	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	48	4.68
11. Peruzzi	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	3	49	4.69
12. Pucci	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3.48
13. Ridolfi	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	3	27	4.43
14. Salviati	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	2	10	4.00
15. Strozzi	0	0	0	1	1	0	0	0	0	0	1	0	1	0	0	0	4	146	5.16
16. Tornabuon	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	3	48	4.68

Note. ${ }^{\text {a Family }}$ net wealth in 1427 in thousands of Lira ("Lira") or $\log _{10}$ (Lira) ("Log").
Sources: Breiger and Pattison (1986); Kent (1978); Padgett and Ansell (1993).

Marriage Network Data

		Family	1	2	3	4	5	6	7	8
9										
1.	Acciaiuol	0	0	0	0	0	0	0	0	1
2.	Albizzi	0	0	0	0	0	1	1	0	1
3.	Barbadori	0	0	0	0	1	0	0	0	1
4.	Bischeri	0	0	0	0	0	0	1	0	0
5.	Castellan	0	0	1	0	0	0	0	0	0
6.	Ginori	0	1	0	0	0	0	0	0	0
7.	Guadagni	0	1	0	1	0	0	0	1	0
8.	Lambertes	0	0	0	0	0	0	1	0	0
9.	Medici	1	1	1	0	0	0	0	0	0

Attribute (Wealth) Data

Arranged Intermarriages among 16 Florentine Families (1394 1434) and Their Wealth (1427)

Family	Family																	Wealth ${ }^{\text {a }}$	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Degree	Lira	Log
1. Acciaiuol	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	10	4.00
2. Albizzi	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	3	36	4.56
3. Barbadori	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	2	55	4.74
4. Bischeri	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	3	44	4.64
5. Castellan	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	3	20	4.30
6. Ginori	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	32	4.51
7. Guadagni	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	1	4	8	3.90
8. Lambertes	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	42	4.62
9. Medici	1	1	1	0	0	0	0	0	0	0	0	0	1	1	0	1	6	-103	5.05
10. Pazzi	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	48	4.68
11. Peruzzi	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	3	49	4.69
12. Pucci	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3.48
13. Ridolfi	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	3	27	4.43
14. Salviati	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	2	10	4.00
15. Strozzi	0	0	0	1	1	0	0	0	0	0	1	0	1	0	0	0	4	146	5.16
16. Tornabuon	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	3	48	4.68

Note. ${ }^{\text {a Family }}$ net wealth in 1427 in thousands of Lira ("Lira") or $\log _{10}$ (Lira) ("Log").
Sources: Breiger and Pattison (1986); Kent (1978); Padgett and Ansell (1993).

Archival Research Examples

- MyPersonality Data: Facebook ego networks and "Big Five" personality traits (survey/archival/online).
- U.S. Supreme Court decisions, 1994-2005: Is Justice Kennedy a "clique broker"? (behavioral/archival/online).
- Two-mode network: Justices by decisions
- Sovereign debt/lending among countries (behavioral/archival/online).

Part III:
 Analyzing Social Network Data

Social Network Programs

- Collecting/Analyzing Egocentric Data
- EgoNet (also as an R package)
- Analyzing Ego-/Sociocentric Data
- UCINet
- Analyzing Social Networks

- ORA
- R: "sna" within the "statnet" meta-package
- SNA software can generate useful measures
- Network level
- Density (number of ties out of possible ties)
- Number of components (separate groups)
- Node level
- Centrality - influence/importance measure
- Indegee, Outdegree, Betweeness, etc.

SNA Metrics Example

- Nodes: Individual universities
- Ties: Hiring relations; who hires whom
- Centrality: Measures of importance and influence in a social network.
- In-degree: Number of PhDs from one university hired by other universities.
- Betweenness: Number of hiring paths that pass through a university.

In-Degree Centrality

Indiana 10 Colorado

Florida 2
1 Illinois

Betweenness Centrality

Network Density

Ties \div Number of Possible Ties $=$ Density

Indiana Colorado

Florida
Illinois
If non-directed: $4 \div\{[4 \times(4-1)] \div 2\}=0.67$
If directed: $4 \div[4 \times(4-1)]=0.33$
...and if allowing reflexive ties: $4 \div(4 \times 4)=0.25$

Empirical Examples from My Research

- Hiring Networks in Academic Psychology
- Classroom Friendships and Aggression
- Co-author Networks and Citation Counts
- Popularity and Sexual Behavior in Social Fraternities and Sororities
- Classroom Friendships and Attachment

Example 1:

 Hiring Networks in Academic Psychology
Psychology Hiring Example

- American Association of Universities (AAU)
- 63 current or former members
- "Research I"; produce 52\% of U.S. PhDs
- Info. obtained from Psych. Dept. websites
- 1,936 professors; 36% women, 64% men
- Current and PhD-conferring universities
- PhD year: 1,600 of 1,936 (83%)
- Range: 1946-2011; $M=1986, S D=15$

Validation Criteria

- Psychology department level
- Productivity data
- National Research Council (NRC) score
- Prestige data (peer-rated)
- U.S. News \& World Report ranking score

Network Space

- Only examined inter-AAU psychology hires
- Excluded non-AAU universities and hires
- 1,936 ties (hires) among 65 nodes (AAU)

AAU Hiring Network

In-Degree Centrality

Betweenness Centrality

Network Centrality and Department Productivity \& Prestige

Variable
$M \quad S D$
12
3

1. In-Degree $\quad 17.91 \quad 11.77$
2. Betweenness ${ }^{1 / 2} \quad 6.73 \quad 3.39 \quad 0.72$
3. $\begin{array}{lllll}\text { NRC score } & 60.2 & 6.25 & 0.88 & 0.65\end{array}$
$\begin{array}{llllll}\text { 4. USNews score } & 3.85 & 0.5 & 0.86 & 0.62 & 0.89\end{array}$

Ns $=60-65$. All ps < . 001.

Network Centrality and Department Productivity \& Prestige

Variable $M \quad S D$ 12 3

1. In-Degree $\quad 17.91 \quad 11.77$
2. Betweenness ${ }^{1 / 2} \quad 6.73 \quad 3.39 \quad 0.72$
3. $\begin{array}{llll}\text { NRC score } & 60.2 & 6.25 & 0.88 \\ & 0.65\end{array}$ lllll

4. USNews score	3.85	0.5	0.86	0.62	0.89

Ns $=60-65$. All ps < .001.

Network Centrality and Department Productivity \& Prestige

Variable
$M \quad S D$
12
3

1. In-Degree $\quad 17.91 \quad 11.77$
2. Betweenness ${ }^{1 / 2} \quad 6.73 \quad 3.39 \quad 0.72$
3. $\begin{array}{llll}\text { NRC score } & 60.2 & 6.25 & 0.88 \\ & 0.65\end{array}$

4. USNews score	3.85	0.5	0.86	0.62	0.89

Ns $=60-65$. All ps < .001.

Limitations

- Sample depends on accuracy of websites
- Limited in scope to AAU institutions
- But where do we stop? Research I or II? International? Business schools?
- Does not account for hires/positions held in between PhD and current position
- Future research should expand network scope and intermediate hires/positions

Example 2:
 Classroom Friendships
 and Aggression

Friendship and Aggression

- 46 undergraduates in a psychology class
- 14 men, 32 women
- Asked about friendships at end of semester:
- 1=acquaintance, 2=friend, 3=close friend
- Focussed on in-degree (i.e., popularity)
- Completed the Brief Aggression Questionnaire.
- Subscales: Physical Aggression, Verbal Aggression, Anger, and Hostility.
- Are more aggressive students liked less?

Friendship Network

8 isolates

Node Size: Aggression

In-Degree and Aggression

Friendship Network

In-Degree and Hostility

Example 3: Coauthor Networks and Citation Counts

1 st-author centrality \& citations

Co-author centrality \& citations

1 st-author centrality \& citations

Example 4:
 Popularity and Sexual Behavior in Social Fraternities and Sororities

Popularity \& Sex Behavior

- 3 fraternities, 2 sororities ($N=222$)
- Friendship networks at three time points across the semester
- Social network analyses of change in friendship indegree across time (T1, T2, T3)
- Change in indegree (popularity) moderated the relationship betwen T1 and T3 sociosexual behavior (e.g., one-night stands)
- Measured Greek identity and sociosexuality

Greek Identity Scale liems ($\alpha=$.65)

It is likely that I will vote for members of my [fraternity/sorority] when they run for office in the student government.

It is important to me that my [fraternity/sorority] is the best.
I see myself as a supporter of my [fraternity/sorority].
My friends support my [fraternity/sorority].
I often try to persuade other to join my [fraternity/sorority].
I regularly attend events sponsored by my [fraternity/sorority].
I often publicly display my support for my [fraternity/sorority] through hats, key rings, clothing, and/or other items.
I often decorate my car with stickers, flags, magnets, license plate frames and/or other items promoting my [fraternity/sorority].
I see myself as belonging to the same group as other members of my [fraternity/ sorority].
It is likely that I will vote for members of my [fraternity/sorority] when they run for homecoming king or queen.

I am proud to be a member of my [fraternity/sorority].
My closest friends are also members of my [fraternity/sorority].

Sociosexual Orientation Inventory ($\alpha=$.89)

With how many different partners have you had sex (sexual intercourse) within the past year?
How many partners do you foresee yourself having sex with during the next five years?
With how many different partners have you had sex on one and only one occasion?
How often do you fantasize about having sex with someone other than your current partner?

Sex without love is okay.
I can imagine myself being comfortable and enjoying "casual" sex with different partners.
I would have to be close to someone before I could feel comfortable having sex with him or her. [reversed]

Popularity \& Sex Behavior

 Women (Sororities) Men (Fraternities)

Conclusions

- Greek Identity positively related to popularity and gregariousness at Time 1.
- Change in sociosexual behavior (having more sex partners) related to increased popularity in fraternities, but not sororities.
- Supports a sexual double-standard explanation.
- Future direction: Model bidirectional causality between popularity and sexual behavior in men.

Example 5:

Classroom Friendship
and Attachment

- 2 college psychology classes ($N s=44,57$)
- Completed friendship networks (valued)
- Completed Big Five personality traits
- Completed attachment measures: Anxious and avoidant dimensions (Fraley et al., 2000)
- Measured network popularity with indegree (log eigenvector) centrality
- Are more avoidant people less likely to be nominated as close friends by others?

Fig. 2. Sociogram (social network) of 44 undergraduates enrolled in an evolutionary psychology class, omitting two isolates (unconnected nodes). Tie thickness reflects friendship strength ($0=$ don't know the person, $1=$ acquaintance, $2=$ friend, $3=$ close friend). Node size reflects raw eigenvector indegree centrality (a measure of popularity).

Fig. 3. Sociogram (social network) of 67 undergraduates enrolled in a social psychology class, omitting eight isolates (unconnected nodes). Tie thickness reflects friendship strength ($0=$ don't know the person, $1=$ acquaintance, $2=$ friend, $3=$ close friend). Node size reflects raw eigenvector indegree centrality (a measure of popularity).

Friendship and Attachment

Table 2. Indegree (log eigenvector) as functions of trait personality and attachment.

Variable	Study 1				Study 2			
	b	$t(36)$	p	$r_{\text {p }}$	b	$t(59)$	p	$r_{\text {p }}$
Extraversion	0.083	3.15	. 003	. 46	-0.002	-0.12	. 905	-. 02
Agreeableness	-0.027	-0.68	. 498	-. 11	-0.028	-0.93	. 357	-. 12
Conscientiousness	-0.040	-1.46	. 153	-. 24	-0.031	-1.03	. 308	-. 13
Neuroticism	0.093	2.24	. 031	. 35	-0.021	-0.80	. 426	-. 10
Openness	0.095	2.42	. 021	. 37	0.042	1.53	. 131	. 20
Anxious attachment	0.002	0.07	. 945	. 01	0.042	2.40	. 020	. 30
Avoidant attachment	-0.039	-1.99	. 054	-. 31	-0.035	-2.16	. 035	-. 27

Webster, Gesselman, and Crosier (2016)

Studies 1 and $2(N=111)$

Variable	b	$t(95)$	$p \leq$	$r_{\mathrm{p}}[95 \% \mathrm{CI}]$
Extraversion	0.040	2.39	.019	$.24[.04, .42]$
Agreeableness	-0.027	-1.10	.273	$-.11[-.30, .09]$
Conscientiousness	-0.036	-1.74	.086	$-.18[-.37, .02]$
Neuroticism	0.036	1.46	.148	$.15[-.05, .34]$
Openness	0.068	2.84	.005	$.28[.08, .46]$
Anxious attachment	0.022	1.49	.139	$.15[-.05, .34]$
Avoidant attachment	-0.037	-2.89	.005	$-.28[-.46,-.08]$
Study	-0.131	-4.73	.001	$-.44[-.59,-.26]$
Study \times extraversion	-0.086	-2.54	.013	$-.25[-.43,-.05]$
Study \times agreeableness	-0.001	-0.02	.982	$-.00[-.20, .20]$
Study \times conscientiousness	0.008	0.20	.838	$.02[-.18, .22]$
Study \times neuroticism	-0.114	-2.31	.023	$-.23[-.41,-.03]$
Study \times openness	-0.053	-1.11	.270	$-.11[-.30, .09]$
Study \times anxious attachment	0.040	1.38	.171	$.14[-.06, .33]$
Study \times avoidant attachment	0.005	0.19	.852	$.02[-.18, .22]$

Let's Think of SNA Projects!

- A social network of attendees at this workshop (e.g., who knows whom, who's published together)?
- What are some of your research projects that might benefit from SNA methods?
- What are some problems and obstacles to using SNA methods in your own research?

Acknowledgements

- Adam Dzedzy and Christopher McCarty (University of Florida)
- Tatiana Orozco (Veterans Administration)
- Corinne Novell (Purdue University)
- Amanda Gesselman (Indiana University Bloomington)
- Benjamin Crosier (Dartmouth College)
- Keivan Zolfaghari (Google)
- Allan Clifton (Vassar College)
- Rachel Greenspan (University of California, Irvine)
- Rosanna Guadagno (University of Texas at Dallas)
- Patrick Ewell (Kenyon College)
- Carrie Veronica Smith (University of Mississippi)

Thank You!

